Bài 3.17 trang 80 SGK Toán 11 tập 1 - Cùng khám phá

2024-09-14 12:52:09

Đề bài

Tìm các giới hạn:

a) \(\mathop {\lim }\limits_{x \to 4} \frac{{{x^2} - x - 12}}{{{x^2} - 16}}\)

b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^4} - 1}}{{{x^3} - 1}}\)

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^3} + x + 5}}{{2{x^3} - 1}}\)

d) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {1 + {x^2}} }}{{2x - 1}}\)

Phương pháp giải - Xem chi tiết

a, b, Đây là giới hạn tại điểm có dạng vô định \(\frac{0}{0}\)

Phân tích đa thức thành nhân tử để khử dạng vô định \(\frac{0}{0}\)

c, d, Đây là giới hạn của hàm số tại vô cực

Áp dụng các công thức sau: \(\mathop {\lim }\limits_{x \to  + \infty } \frac{c}{{{x^k}}} = 0;\,\mathop {\lim }\limits_{x \to  - \infty } \frac{c}{{{x^k}}} = 0\)

Chia cả tử và mẫu cho lũy thừa của \(x\) với số mũ lớn nhất

Chú ý: \(\mathop {\lim }\limits_{x \to  - \infty } \left| x \right| = \mathop {\lim }\limits_{x \to  - \infty } \left( { - x} \right)\)

Lời giải chi tiết

a, 

\(\mathop {\lim }\limits_{x \to 4} \frac{{{x^2} - x - 12}}{{{x^2} - 16}} = \mathop {\lim }\limits_{x \to 4} \frac{{\left( {x + 3} \right)\left( {x - 4} \right)}}{{\left( {x + 4} \right)\left( {x - 4} \right)}} = \mathop {\lim }\limits_{x \to 4} \frac{{x + 3}}{{x + 4}} = \frac{{4 + 3}}{{4 + 4}} = \frac{7}{8}\)

b, 

\(\mathop {\lim }\limits_{x \to 1} \frac{{{x^4} - 1}}{{{x^3} - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^3} + {x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^3} + {x^2} + x + 1}}{{{x^2} + x + 1}} = \frac{{{1^3} + {1^2} + 1 + 1}}{{{1^2} + 1 + 1}} = \frac{4}{3}\)

c, 

Chia cả từ và mẫu cho \({x^3}\) ta được \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^3} + x + 5}}{{2{x^3} - 1}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{1 + \frac{1}{{{x^2}}} + \frac{5}{{{x^3}}}}}{{2 - \frac{1}{{{x^3}}}}} = \frac{1}{2}\)

d, 

Chia cả tử và mẫu cho \(x\)

\(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {1 + {x^2}} }}{{2x - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{\left| x \right|\sqrt {\frac{1}{{{x^2}}} + 1} }}{{2x - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x\sqrt {\frac{1}{{{x^2}}} + 1} }}{{2x - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - \sqrt {\frac{1}{{{x^2}}} + 1} }}{{2 - \frac{1}{x}}} =  - \frac{1}{2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"