Bài 6.23 trang 30 SGK Toán 11 tập 2 – Cùng khám phá

2024-09-14 12:54:17

Đề bài

Giải các bất phương trình:

a) \({2^{2x - 1}} + {2^{2x - 2}} + {2^{2x - 3}} \ge 448\)

b) \({\left( {\frac{1}{3}} \right)^{2x - 5}} > {3^{{x^2} + 2x}}\)

c) \(\log \left( {{x^2} + x - 2} \right) \ge \log \left( {x - 1} \right)\)

d) \({\log _{\frac{1}{2}}}\left( {{x^2} - \frac{1}{2}} \right) > 1\)

Phương pháp giải - Xem chi tiết

a, b) Khi a > 1: \({a^{A\left( x \right)}} > {a^{B\left( x \right)}} \Leftrightarrow A\left( x \right) > B\left( x \right)\)

Khi 0 < a < 1: \({a^{A\left( x \right)}} > {a^{B\left( x \right)}} \Leftrightarrow A\left( x \right) < B\left( x \right)\)

c, d) Đưa \({\log _a}A > \alpha \) về dạng \({\log _a}A > {\log _a}B\)

Nếu a > 1: \({\log _a}A > {\log _a}B \Leftrightarrow A > B > 0\)

Nếu 0 < a < 1: \({\log _a}A > {\log _a}B \Leftrightarrow 0 < A < B\)

Lời giải chi tiết

a)

\(\begin{array}{l}{2^{2x - 1}} + {2^{2x - 2}} + {2^{2x - 3}} \ge 448\\ \Leftrightarrow {2^{2x - 3}}\left( {{2^2} + 2 + 1} \right) \ge 448\\ \Leftrightarrow {2^{2x - 3}}.7 \ge 448\\ \Leftrightarrow {2^{2x - 3}} \ge 64\\ \Leftrightarrow {2^{2x - 3}} \ge {2^6}\\ \Leftrightarrow 2x - 3 \ge 6\\ \Leftrightarrow x \ge \frac{9}{2}\end{array}\)

Vậy bất phương trình có tập nghiệm \(\left[ {\frac{9}{2};\left. { + \infty } \right)} \right.\)

b)

\(\begin{array}{l}{\left( {\frac{1}{3}} \right)^{2x - 5}} > {3^{{x^2} + 2x}}\\ \Leftrightarrow {3^{5 - 2x}} > {3^{{x^2} + 2x}}\\ \Leftrightarrow 5 - 2x > {x^2} + 2x\\ \Leftrightarrow {x^2} + 4x - 5 < 0\\ \Leftrightarrow  - 5 < x < 1\end{array}\)

Vậy bất phương trình có tập nghiệm \(\left( { - 5;1} \right)\)

c)

\(\begin{array}{l}\log \left( {{x^2} + x - 2} \right) \ge \log \left( {x - 1} \right)\\ \Leftrightarrow {x^2} + x - 2 \ge x - 1 \ge 0\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 1 \ge 0\\x \ge 1\end{array} \right.\\ \Leftrightarrow x \ge 1\end{array}\)

Vậy bất phương trình có tập nghiệm \(\left[ {\left. {1; + \infty } \right)} \right.\)

d)

\(\begin{array}{l}{\log _{\frac{1}{2}}}\left( {{x^2} - \frac{1}{2}} \right) > 1\\ \Leftrightarrow {\log _{\frac{1}{2}}}\left( {{x^2} - \frac{1}{2}} \right) > {\log _{\frac{1}{2}}}\frac{1}{2}\\ \Leftrightarrow 0 < {x^2} - \frac{1}{2} < \frac{1}{2}\\ \Leftrightarrow \frac{1}{2} < {x^2} < 1\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt {\frac{1}{2}}  < x < 1\\ - \sqrt {\frac{1}{2}}  > x >  - 1\end{array} \right.\end{array}\)

Vậy bất phương trình có tập nghiệm \(\left( { - 1; - \sqrt {\frac{1}{2}} } \right) \cup \left( {\sqrt {\frac{1}{2}} ;1} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"