Bài 8.49 trang 90 SGK Toán 11 tập 2 - Cùng khám phá

2024-09-14 12:55:24

Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = \(\sqrt 3 \)a, SA vuông góc với mặt phẳng đáy và góc phẳng nhị diện [S, BC, A] có số đo bằng 600. Thể tích của khối chóp S.ABCD là

A. V = 3a³.

B. V = \(\frac{{\sqrt 3 }}{3}\)a3.

C. V = a3.

D. V = \(\frac{{{a^3}}}{3}\).

Phương pháp giải - Xem chi tiết

Công thức tính thể tích hình chóp: \(V = \frac{1}{3}S.h\) với S là diện tích đáy, h là chiều cao.

Lời giải chi tiết

BC vuông góc với (SAB)

Nên \(\left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \widehat {SBA} = {60^0}\)

\(SA = AB.\tan \widehat {SBA} = a.\tan {60^0} = a\sqrt 3 \)

\(V = \frac{1}{3}S.h = \frac{1}{3}.AD.AB.SA = a\sqrt 3 .a.a\sqrt 3  = 3{a^3}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"