Bài 8.45 trang 90 SGK Toán 11 tập 2 - Cùng khám phá

2024-09-14 12:55:27

Đề bài

Cho tử diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = OB = OC. Gọi M là trung điểm của BC. Góc giữa hai đường thẳng OM và AB bằng

A. 900.

B. 300.

C. 600.

D. 450.

Phương pháp giải - Xem chi tiết

Chọn 2 đường thẳng cắt nhau c và d lần lượt song song với a và b. Khi đó góc giữa c và d là góc giữa a và b.

Lời giải chi tiết

Đặt OA = OB = OC = a

Gọi D là trung điểm của AC nên DM // AB và bằng một nửa AB

\( \Rightarrow \widehat {\left( {OM,AB} \right)} = \widehat {\left( {OM,DM} \right)} = \widehat {OMD}\)

Ta có: OA vuông góc và bằng OC nên tam giác OAC là tam giác vuông cân tại C

\(AC = \sqrt {O{A^2} + O{B^2}}  = \sqrt 2 a\)

\(\begin{array}{l}AC.OD = OA.OC\\ \Leftrightarrow OD = \frac{{\sqrt 2 }}{2}a\end{array}\)

Tương tự với OM, ta có: \(OM = \frac{{\sqrt 2 }}{2}a\)

\(AB = \sqrt {O{A^2} + O{B^2}}  = \sqrt 2 a\)

Suy ra \(DM = \frac{{\sqrt 2 }}{2}a\)

Vậy tam giác DOM đều. Suy ra \(\widehat {OMD} = {60^0}\).

Chọn đáp án C.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"