Đề bài
Trong việc lát sàn nhà như Hình 1.11, viên gạch ở hàng dọc thứ 4 từ trái sang và hàng ngang thứ 2 từ dưới lên là ảnh của viên gạch ở góc dưới bên trái qua phép tịnh tiến theo vectơ nào? (Gợi ý: Tính vectơ tịnh tiến đó theo hai vectơ \(\overrightarrow u ,\overrightarrow v \) trên hình vẽ).
Phương pháp giải - Xem chi tiết
Tính vectơ tịnh tiến đó theo hai vectơ \(\overrightarrow u ,\overrightarrow v \) trên hình vẽ
Lời giải chi tiết
Đặt các điểm như hình vẽ trên. Viên gạch ở hàng dọc thứ 4 từ trái sang và hàng ngang thứ 2 từ dưới lên là viên gạch GDFJ, viên gạch ở góc dưới bên trái là viên gạch HCEI.
Theo quy tắc hình bình hành, ta suy ra \(\overrightarrow {IJ} = \vec v + 3\vec u\). Đặt \(\vec x = \vec v + 3\vec u\).
Phép tịnh tiến \({T_{\vec x}}\) biến các điểm H, C, E, I tương ứng thành các điểm G, D, F, J. Do đó, phép tịnh tiến \({T_{\vec x}}\) biến viên gạch HCEI thành viên gạch GDFJ.
Vậy trong việc lát sàn nhà như Hình 1.11, viên gạch ở hàng dọc thứ 4 từ trái sang và hàng ngang thứ 2 từ dưới lên là ảnh của viên gạch ở góc dưới bên trái qua phép tịnh tiến theo vectơ \(\vec x\) với \(\vec x = \vec v + 3\vec u\)