Giải bài 1.31 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức

2024-09-14 12:56:26

Đề bài

Cho đường thẳng d và hai điểm A, B cùng thuộc một nửa mặt phẳng bờ d. Hai điểm E, F thay đổi trên d sao cho \(\overrightarrow {EF} \) không đổi. Xác định vị trí của hai điểm E, F để AE + BF nhỏ nhất.

Phương pháp giải - Xem chi tiết

Dựa vào kiến thức đã học về phép biến hình để làm

Lời giải chi tiết

Ta có: \(\left| {\overrightarrow {EF} } \right| = m\,\,(m > 0)\) không đổi.

Đặt \(\vec u = \overrightarrow {EF\;} \left( {\vec u \ne \vec 0} \right),\,\vec u\) không đổi, khi đó \(\mid \overrightarrow u \mid  = m\)  không đổi.

Gọi G là ảnh của điểm B qua phép tịnh tiến theo vectơ \(\vec u\). Khi đó \(\overrightarrow {BG}  =  - \vec u\). Vì B cố định và \(\overrightarrow u \) không đổi nên G cố định. Gọi G' là ảnh của G qua phép đối xứng trục d thì G' cố định.

Gọi giao điểm của AG' và đường thẳng d là E, trên d lấy điểm F thỏa mãn EF = m và \(\overrightarrow {EF}  = \vec u =  - \overrightarrow {BG} \) hay \(\overrightarrow {EF}  = \overrightarrow {GB} \). Khi đó BGEF là hình bình hành nên BF = GE.

Mà G và G' đối xứng nhau qua d nên GE = G'E. Do đó BF = GE = G'E.

Ta có: AE + BF = AE + G'E = AG' (1).

Ta có E và F như trên là hai điểm cần tìm để AE + BF nhỏ nhất.

Thật vậy, gọi E' và F' là 2 điểm trên d, khác E và F sao cho \(\overrightarrow {E'F'}  = \vec u\)  và \(\left| {\overrightarrow {E'F'} } \right| = \left| {\vec u} \right| = m\).

Ta có: AE' + BF' = AE' + GE' = AE' + G'E' > AG' (2) (bất đẳng thức trong tam giác AG'E').

Từ (1) và (2) suy ra AE + BF < AE' + BF'. Từ đó suy ra điều phải chứng minh.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"