Giải bài 4 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo

2024-09-14 12:58:12

Đề bài

Cho hai điểm B, C cố định trên đường tròn \(\left( {O;{\rm{ }}R} \right)\) và một điểm A thay đổi trên đường tròn đó. Chứng minh trực tâm H của tam giác ABC luôn nằm trên một đường tròn cố định.

Phương pháp giải - Xem chi tiết

Ta đi chứng minh trực tâm H của tam giác ABC luôn nằm trên ảnh của đường tròn \(\left( {O;{\rm{ }}R} \right)\) qua phép tịnh tiến theo \(\overrightarrow {B'C} \)

Lời giải chi tiết

Kẻ đường kính BB’.

Do B, C cố định trên (O) nên B’, C cũng cố định trên (O).

Suy ra \(\overrightarrow {B'C} \) là vectơ không đổi.

Ta có \(\widehat {BCB'} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn (O)).

Suy ra \(BC \bot B'C.\)

Mà \(AH \bot BC\)  (do H là trực tâm của ∆ABC).

Do đó \(AH//B'C\,\,\left( 1 \right)\)

Chứng minh tương tự, ta được \(AB'//CH{\rm{ }}\left( 2 \right)\)

Từ (1), (2), suy ra tứ giác AHCB’ là hình bình hành.

Suy ra \(AH{\rm{ }} = {\rm{ }}B'C.\)

Mà \(AH{\rm{ }}//{\rm{ }}B'C\)  (chứng minh trên).

Vì vậy \(\overrightarrow {AH}  = \overrightarrow {B'C} \)

Do đó \(H = {T_{\overrightarrow {B'C} }}\left( A \right)\).

Vậy khi A thay đổi trên đường tròn (O) thì trực tâm H của tam giác ABC luôn nằm trên ảnh của đường tròn (O) là đường tròn (O’) qua \({{\rm{T}}_{\overrightarrow {B'C} }}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"