Đề bài
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình \(x{\rm{ }}-{\rm{ }}y{\rm{ }} = {\rm{ }}0\) và cho điểm \(M({x_0};{\rm{ }}{y_0}).\)Tìm tọa độ điểm \(M'{\rm{ }} = {\rm{ }}{Đ_d}\left( M \right).\)
Phương pháp giải - Xem chi tiết
Xét hai trường hợp: \(M{\rm{ }} \in {\rm{ }}d\) hoặc \(M \notin d.\)
Lời giải chi tiết
Trường hợp 1: \(M{\rm{ }} \in {\rm{ }}d\)
Khi đó \(M{\rm{ }} = {\rm{ }}{Đ_d}\left( M \right).\)
Vì vậy \(M' \equiv M.\)
Do đó \(M'({x_0};{\rm{ }}{y_0}).\)
Trường hợp 2: \(M \notin d.\)
Theo đề, ta có \(M'{\rm{ }} = {\rm{ }}{Đ_d}\left( M \right).\)
Suy ra d là đường trung trực của đoạn MM’, do đó \(d \bot MM'.\)
Đường thẳng d có vectơ pháp tuyến \({\vec n_d} = \left( {1; - 1} \right)\)
Vì vậy MM’ nhận \({\vec n_d} = \left( {1; - 1} \right)\)làm vectơ chỉ phương.
Suy ra phương trình MM’: \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x}} = {{\rm{x}}_0} + {\rm{t}}}\\{{\rm{y}} = {{\rm{y}}_0} - {\rm{t}}}\end{array}} \right.\)
Gọi H là giao điểm của MM’ và d.
Suy ra H là trung điểm MM’ và tọa độ \(H({x_0}\; + {\rm{ }}t;{\rm{ }}{y_0}\;-{\rm{ }}t).\)
Ta có \(H \in d.\)
Suy ra \({x_0}\; + {\rm{ }}t{\rm{ }}-{\rm{ }}{y_0}\; + {\rm{ }}t{\rm{ }} = {\rm{ }}0.\)
\(t = \frac{{{y_0} - {x_0}}}{2}\)
Do đó tọa độ \(H\left( {\frac{{{x_0} + {y_0}}}{2};\frac{{{x_0} + {y_0}}}{2}} \right)\)
Ta có H là trung điểm MM’.
Suy ra \(\left\{ {\begin{array}{*{20}{l}}{{{\rm{x}}_{{\rm{M'}}}} = 2{{\rm{x}}_{\rm{H}}} - {{\rm{x}}_{\rm{M}}} = 2.\frac{{{{\rm{x}}_0} + {{\rm{y}}_0}}}{2} - {{\rm{x}}_0} = {{\rm{y}}_0}}\\{{{\rm{y}}_{{\rm{M'}}}} = 2{{\rm{y}}_{\rm{H}}} - {{\rm{y}}_{\rm{M}}} = 2.\frac{{{{\rm{x}}_0} + {{\rm{y}}_0}}}{2} - {{\rm{y}}_0} = {{\rm{x}}_0}}\end{array}} \right.\)
Do đó tọa độ
Vậy \(\left\{ {\begin{array}{*{20}{l}}{{\rm{M'}}\left( {{{\rm{x}}_0};{{\rm{y}}_0}} \right)\,\,khi\,\,{\rm{M}} \in {\rm{d}}}\\{{\rm{M'}}\left( {{{\rm{y}}_0};{{\rm{x}}_0}} \right)\,\,khi\,\,{\rm{M}} \notin {\rm{d}}}\end{array}} \right.\)