Giải bài 2 trang 29 Chuyên đề học tập Toán 11 Chân trời sáng tạo

2024-09-14 12:58:55

Đề bài

Cho hai tam giác đều ABC và AB’C’ như Hình 9. Gọi M, N lần lượt là trung điểm của BB’ và CC’. Chứng minh ∆AMN đều.

Phương pháp giải - Xem chi tiết

Tam giác cân có một góc bằng \({60^o}\) là tam giác đều.

Lời giải chi tiết

Do DABC là tam giác đều nên \(AB{\rm{ }} = {\rm{ }}AC\) và \(\widehat {BAC} = 60^\circ \)

Do DAB’C’ là tam giác đều nên \(AB'{\rm{ }} = {\rm{ }}AC'\) và \(\widehat {{\rm{B'}}AC'} = 60^\circ \)

Ta có phép quay tâm A, góc quay 60° biến:

⦁ Điểm B thành điểm C;

⦁ Điểm B’ thành điểm C’.

Do đó ảnh của đoạn thẳng BB’ qua phép quay tâm A, góc quay 60° là đoạn thẳng CC’.

Mà M, N lần lượt là trung điểm của BB’, CC’ (giả thiết).

Do đó phép quay tâm A, góc quay 60° biến điểm M thành điểm N.

Suy ra \(AM{\rm{ }} = {\rm{ }}AN\)  và \(\widehat {MAN} = \left( {AM,AN} \right) = 60^\circ \)

DAMN có \(AM{\rm{ }} = {\rm{ }}AN\) và \(\widehat {MAN} = 60^\circ \) ° nên là tam giác đều.

Vậy ∆AMN đều.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"