Giải bài 6 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo

2024-09-14 12:59:07

Đề bài

Cho hình thang ABCD có hai đáy là AB và CD với \(CD = \frac{1}{2}AB\). Gọi I là giao điểm của hai đường chéo AC và BD. Tìm phép vị tự biến \(\overrightarrow {AB} \) thành \(\overrightarrow {CD} \).

Phương pháp giải - Xem chi tiết

Tìm tâm và tỉ số k của phép vị tự \(\overrightarrow {AB} \) thành \(\overrightarrow {CD} \).

Lời giải chi tiết

Vì ABCD là hình thang nên AB // CD

Ta có I là giao điểm của hai đường chéo AC và BD, áp dụng hệ quả định lí Thales, ta được \(\frac{{IC}}{{IA}} = \frac{{IB}}{{ID}} = \frac{{CD}}{{AB}} = \frac{1}{2}\)

Suy ra \(IC = \frac{1}{2}IA\)

Mà A, C nằm khác phía so với I.

Do đó \(\overrightarrow {IC}  =  - \frac{1}{2}\overrightarrow {IA} \)

Vì vậy \({V_{\left( {I, - \frac{1}{2}} \right)}}\left( A \right) = C\)

Chứng minh tương tự, ta được \({V_{\left( {I, - \frac{1}{2}} \right)}}\left( B \right) = D\)

Khi đó qua phép vị tự \({V_{\left( {I, - \frac{1}{2}} \right)}}\) biến \(\overrightarrow {AB} \) thành \(\overrightarrow {CD} \).

Vậy phép vị tự cần tìm là \({V_{\left( {I, - \frac{1}{2}} \right)}}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"