Giải bài 6 trang 33 Chuyên đề học tập Toán 11 Cánh diều

2024-09-14 13:01:33

Đề bài

Chứng minh rằng qua phép vị tự tâm O tỉ số k (k ≠ 0), ảnh của mọi đường thẳng đi qua tâm O là chính nó.

Phương pháp giải - Xem chi tiết

Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A'B' = \left| k \right|AB\)

Lời giải chi tiết

Theo định lí về tính chất của phép vị tự ta có: Phép vị tự tâm O tỉ số k (k ≠ 0) biến đường thẳng thành đường thẳng song song hoặc trùng với nó.

Giả sử qua phép vị tự tâm O tỉ số k (k ≠ 0) biến đường thẳng d thành đường thẳng d' thì d // d' hoặc d ≡ d'.

Mà O cố định, O thuộc đường thẳng d (giả thiết) và phép vi tự tâm O tỉ số k (k ≠ 0) biến điểm O thành chính nó nên O cũng thuộc đường thẳng d'. Do đó, d và d' không thể song song với nhau nên d và d' trùng nhau.

Như vậy, phép vị tự tâm O tỉ số k (k ≠ 0) biến đường thẳng d thành đường thẳng trùng với chính nó. 

Nói cách khác: Qua phép vị tự tâm O tỉ số k (k ≠ 0), ảnh của mọi đường thẳng đi qua tâm O là chính nó. 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"