Giải bài 10 trang 33 Chuyên đề học tập Toán 11 Cánh diều

2024-09-14 13:01:35

Đề bài

Chứng minh rằng các đa giác đều có cùng số cạnh thì đồng dạng với nhau.

Phương pháp giải - Xem chi tiết

- Phép biến hình F biến 2 điểm M, N bất kì thành 2 điểm M’, N’ sao cho \(M'N' = kMN\) với k là số thực dương cho trước, gọi là phép đồng dạng tỉ số k.

- Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A'B' = \left| k \right|AB\)

Lời giải chi tiết

Giả sử cho hai n-giác đều  và \({B_1}{B_2} \ldots {B_n}\) có tâm lần lượt là O và O'. Đặt \(k = \frac{{{B_1}{B_2}}}{{{A_1}{A_2}}} = \frac{{O'{B_1}}}{{O{A_1}}}\) . Gọi V là phép vị tự tâm O, tỉ số k và \({C_1}{C_2} \ldots {C_n}\)  là ảnh của đa giác \({A_1}{A_2}...{A_n}\) qua phép vị tự V. Hiển nhiên \({C_1}{C_2} \ldots {C_n}\) cũng là đa giác đều và vì \(\frac{{{C_1}{C_2}}}{{{A_1}{A_2}}} = k\) nên \({C_1}{C_2}\; = {\rm{ }}{B_1}{B_2}\). Vậy hai n-giác đều \({C_1}{C_2} \ldots {C_n}\) và \({B_1}{B_2} \ldots {B_n}\) có cạnh bằng nhau, tức là có phép dời hình D biến \({C_1}{C_2} \ldots {C_n}\) thành \({B_1}{B_2} \ldots {B_n}\). Nếu gọi F là phép hợp thành của V và D thì F là phép đồng đạng biến \({A_1}{A_2} \ldots {A_n}\;\)  thành \({B_1}{B_2} \ldots {B_n}\). Vậy hai đa giác đều đó đồng dạng với nhau.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"