Giải bài 1.4 trang 7 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:02:32

Đề bài

Cho \(\cos x =  - \frac{5}{{13}}\,\,({90^o} < x < {180^o})\). Tính các giá trị lượng giác còn lại.

Phương pháp giải - Xem chi tiết

Áp dụng công thức \(si{n^2}x + {\cos ^2}x = 1\) để tính \(sinx\). Lưu ý điều kiện \({90^o} < x < {180^o}\) để xét dấu của \(\sin x\).

Áp dụng công thức \({\mathop{\rm tanx}\nolimits}  = \frac{{sinx}}{{\cos x}}\) để tính \(\tan x\).

Áp dụng công thức \({\mathop{\rm cotx}\nolimits}  = \frac{1}{{\tan x}}\) để tính \(\cot \,x\).

Lời giải chi tiết

Ta có:

\(\begin{array}{l}si{n^2}x + {\cos ^2}x = 1\\si{n^2}x + {\left( { - \frac{5}{{13}}} \right)^2} = 1\\si{n^2}x = 1 - \frac{{25}}{{169}}\\{\sin ^2}x = \frac{{144}}{{169}}\end{array}\)

Mà \({90^o} < x < {180^o}\)suy ra \(\sin \,x > 0\) nên \(\sin \,x = \frac{{12}}{{13}}\)

\(\tan \,x = \frac{{sin\,x}}{{\cos x}} = \frac{{\frac{{12}}{{13}}}}{{\frac{{ - 5}}{{13}}}} =  - \frac{{12}}{5}\) và \(\cot \,x = \frac{1}{{\tan x}} = 1:\left( { - \frac{{12}}{5}} \right) =  - \frac{5}{{12}}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"