Đề bài
Hoàn thành bảng sau
Phương pháp giải - Xem chi tiết
Đổi độ sang radian: Áp dụng công thức: \({a^0} = a.\frac{\pi }{{180}}\)(rad).
Đổi radian sang độ: Áp dụng công thức: \(\alpha \)rad = \({\left( {\alpha .\frac{{180}}{\pi }} \right)^0}\).
Lời giải chi tiết
Đổi độ sang radian
\({20^0} = 20.\frac{\pi }{{180}} = \frac{\pi }{9}\). \({150^0} = 150.\frac{\pi }{{180}} = \frac{{5\pi }}{6}\). \({500^0} = 500.\frac{\pi }{{180}} = \frac{{25\pi }}{9}\)
Đổi radian sang độ
\(\frac{{11\pi }}{2}\) rad = \({\left( {\frac{{11\pi }}{2}.\frac{{180}}{\pi }} \right)^0} = {990^0}\).
\(\frac{{ - 5\pi }}{6}\) rad = \({\left( { - \frac{{5\pi }}{6}.\frac{{180}}{\pi }} \right)^0} = - {150^0}\).
\(\frac{{7\pi }}{{15}}\) rad = \({\left( { - \frac{{7\pi }}{{15}}.\frac{{180}}{\pi }} \right)^0} = {84^0}\).