Giải bài 1.19 trang 18 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:02:41

Đề bài

Xét tính tuần hoàn của các hàm số sau:

a) \(y = {\rm{A}}\sin \left( {\omega x + \varphi } \right)\) với A > 0;                          

b) \(y = {\rm{A}}\tan \left( {\omega x + \varphi } \right)\) với A > 0;

c) \(y = 3\sin 2x + 3\cos 2x\);                                                    

d) \(y = 3\sin \left( {2x + \frac{\pi }{6}} \right) + 3\sin \left( {2x - \frac{\pi }{3}} \right)\).

Phương pháp giải - Xem chi tiết

Bước 1: Tập xác định D.

Bước 2: Chứng minh rằng với mọi \(x \in D\), \(x + T \in D\)và \(f(x + T) = f(x)\).

(Áp dụng \(\sin (x + 2\pi ) = \sin x\) và \(\tan (x + \pi ) = \tan x\)).

Ta chứng minh được câu a, câu b là trường hợp tổng quát của hàm \(y = {\rm{A}}\sin \left( {\omega x + \varphi } \right)\) và \(y = {\rm{A}}\tan \left( {\omega x + \varphi } \right)\). Biến đổi câu c,d về dạng câu a,b bằng cách áp dụng công thức

\(\sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\) và công thức biến đổi tổng thành tích.

Lời giải chi tiết

a) Tập xác định: \(D = \mathbb{R}\).

Nếu kí hiệu \(f(x) = {\rm{A}}\sin \left( {\omega x + \varphi } \right)\) thì với mọi \(x \in D\), ta có

\(x + \frac{\pi }{\omega } \in D,\,\,x - \frac{\pi }{\omega } \in D\) và

\(f\left( {x + \frac{{2\pi }}{\omega }} \right) = A\sin \left( {\omega \left( {x + \frac{{2\pi }}{\omega }} \right) + \varphi } \right) = A\sin \left( {\omega x + 2\pi  + \varphi } \right) = A\sin \left( {\omega x + \varphi } \right) = f(x)\)

Vậy hàm số đã cho là hàm số tuần hoàn. Chu kì của hàm số này là \(\frac{{2\pi }}{\omega }\).

b) Nếu kí hiệu D là tập xác định của hàm số \(f(x) = {\rm{A}}\tan \left( {\omega x + \varphi } \right)\) thì với mọi \(x \in D\), ta có

\(x + \frac{\pi }{\omega } \in D,\,\,x - \frac{\pi }{\omega } \in D\) và

\(f\left( {x + \frac{\pi }{\omega }} \right) = A\tan \left( {\omega \left( {x + \frac{\pi }{\omega }} \right) + \varphi } \right) = A\tan \left( {\omega x + \pi  + \varphi } \right) = A\tan \left( {\omega x + \varphi } \right) = f(x)\)

Vậy hàm số đã cho là hàm số tuần hoàn. Chu kì của hàm số này là \(\frac{\pi }{\omega }\).

c) Ta có \(y = 3\sin 2x + 3\cos 2x = 3(\sin 2x + \cos 2x) = 3\sqrt 2 \sin \left( {2x + \frac{\pi }{4}} \right)\)

Theo như câu a, hàm số \(y = 3\sin 2x + 3\cos 2x\) là hàm số tuần hoàn có chu kì \(\pi \).

d) Ta có:

\(\begin{array}{l}y = 3\sin \left( {2x + \frac{\pi }{6}} \right) + 3\sin \left( {2x - \frac{\pi }{3}} \right) = 3\left( {\sin \left( {2x + \frac{\pi }{6}} \right) + \sin \left( {2x - \frac{\pi }{3}} \right)} \right)\\\,\,\,\,\, = 3\left( {2\sin \left( {\frac{{\left( {2x + \frac{\pi }{6}} \right) + \left( {2x - \frac{\pi }{3}} \right)}}{2}} \right)\cos \left( {\frac{{\left( {2x + \frac{\pi }{6}} \right) - \left( {2x - \frac{\pi }{3}} \right)}}{2}} \right)} \right)\\\,\,\,\,\, = 3.2\sin \left( {2x - \frac{\pi }{{12}}} \right)\cos \frac{\pi }{4} = 6\sin \left( {2x - \frac{\pi }{{12}}} \right).\frac{{\sqrt 2 }}{2} = 3\sqrt 2 \sin \left( {2x - \frac{\pi }{{12}}} \right).\end{array}\)

Theo như câu a, hàm số \(y = 3\sin \left( {2x + \frac{\pi }{6}} \right) + 3\sin \left( {2x - \frac{\pi }{3}} \right)\) là hàm số tuần hoàn có chu kì \(\pi \).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"