Giải bài 1.30 trang 25 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:02:43

Đề bài

Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t (ở đây t là số ngày tính từ ngày 1 tháng giêng) của một năm không nhuận được mô hình hóa bởi hàm số:

\(L\left( t \right) = 12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right)\) với \(t \in \mathbb{Z}\) và \(0 < t \le 365\)

a) Vào ngày nào trong năm thì thành phố A có ít giờ ánh sáng mặt trời nhất?

b) Vào ngày nào trong năm thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?

c) Vào ngày nào trong năm thì thành phố A có khoảng 10 giờ ánh sáng mặt trời?

Phương pháp giải - Xem chi tiết

* Sử dụng kiến thức \( - 1 \le \sin x \le 1\) với mọi x

* Sử dụng cách giải phương trình \(\sin x = m\) (1)

+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.

+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha  \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\sin \alpha  = m\).

Khi đó, phương trình (1) tương đương với:

\(\sin x = m \Leftrightarrow \sin x = \sin \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x = \pi  - \alpha  + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Lời giải chi tiết

Vì \( - 1 \le \sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) \le 1\) nên \( - 2,83 \le 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) \le 2,83\)

Do đó, \(9,17 = 12 - 2,83 \le 12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) \le 12 + 2,83 = 12,83\;\forall t \in \mathbb{R}\)

a) Ngày thành phố A có ít giờ ánh sáng nhất ứng với \(\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) =  - 1 \Leftrightarrow \frac{{2\pi }}{{365}}\left( {t - 80} \right) = \frac{{ - \pi }}{2} + k2\pi  \Leftrightarrow t = \frac{{ - 45}}{4} + 365k\left( {k \in \mathbb{Z}} \right)\)

Vì \(0 < t \le 365\) nên \(k = 1,\) suy ra \(t = \frac{{ - 45}}{4} + 365 = 353,75.\) Như vậy, vào ngày thứ 353 của năm, tức là khoảng ngày 20 tháng 12 thì thành phố A sẽ có ít giờ ánh sáng mặt trời nhất.

b) Ngày thành phố A có nhiều giờ ánh sáng nhất ứng với \(\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = 1 \Leftrightarrow \frac{{2\pi }}{{365}}\left( {t - 80} \right) = \frac{\pi }{2} + k2\pi  \Leftrightarrow t = \frac{{45}}{4} + 365k\left( {k \in \mathbb{Z}} \right)\)

Vì \(0 < t \le 365\) nên \(k = 0,\) suy ra \(t = 171,25.\) Như vậy, vào ngày thứ 171 của năm, tức là khoảng ngày 20 tháng 6 thì thành phố A sẽ có nhiều giờ ánh sáng mặt trời nhất.

c) Thành phố A có khoảng 10 giờ ánh sáng mặt trời trong ngày nếu

\(12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = 10 \Leftrightarrow 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = \frac{{ - 200}}{{283}}\)

\( \Leftrightarrow \left[ \begin{array}{l}\frac{{2\pi }}{{365}}\left( {t - 80} \right) \approx  - 0,78 + k2\pi \\\frac{{2\pi }}{{365}}\left( {t - 80} \right) \approx 3,938 + k2\pi \end{array} \right.\)

Từ đó ta được \(\left[ \begin{array}{l}t \approx 34,69 + 365k\\t \approx 308,3 + 365k\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vì \(0 < t \le 365\) nên \(k = 0,\) suy ra \(t \approx 34,69\) hoặc \(t \approx 308,30.\) Như vậy, vào ngày thứ 34 của năm, tức là khoảng ngày 3 tháng 2 và ngày thứ 308 của năm, tức là ngày 4 tháng 11 thì thành phố A có khoảng 10 giờ ánh sáng mặt trời.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"