Giải bài 1.63 trang 30 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:02:50

Đề bài

Giải các phương trình sau:

a) \(\sin 5x + \cos 5x =  - 1\);                      

b) \(\cos 3x - \cos 5x = \sin x\);

c) \(2{\cos ^2}x + \cos 2x = 2\);                           

d) \({\sin ^4}x + {\cos ^4}x = \frac{1}{2}{\sin ^2}2x\).

Phương pháp giải - Xem chi tiết

Sử dụng các công thức biến đổi lượng giác để đưa về phương trình lượng giác cơ bản rồi giải.

Lời giải chi tiết

a) \(\sin 5x + \cos 5x =  - 1 \Leftrightarrow \sqrt 2 \sin \left( {5x + \frac{\pi }{4}} \right) =  - 1 \Leftrightarrow \sin \left( {5x + \frac{\pi }{4}} \right) = \frac{{ - 1}}{{\sqrt 2 }}\)                              

\( \Leftrightarrow \left[ \begin{array}{l}5x + \frac{\pi }{4} = \frac{{ - \pi }}{4} + k2\pi \\5x + \frac{\pi }{4} = \pi  + \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - \pi }}{{10}} + k\frac{{2\pi }}{5}\\x = \frac{\pi }{5} + k\frac{{2\pi }}{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

b) \(\cos 3x - \cos 5x = \sin x \Leftrightarrow 2\sin 4x\sin x = \sin x \Leftrightarrow \sin x\left( {2\sin 4x - 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\2\sin 4x - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\\sin 4x = \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\4x = \frac{\pi }{6} + k2\pi \\4x = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{\pi }{{24}} + k\frac{\pi }{2}\\4x = \frac{{5\pi }}{{24}} + k\frac{\pi }{2}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

c) \(2{\cos ^2}x + \cos 2x = 2 \Leftrightarrow \left( {2{{\cos }^2}x - 1} \right) + \cos 2x = 1 \Leftrightarrow 2\cos 2x = 1 \Leftrightarrow \cos 2x = \frac{1}{2}\)\( \Leftrightarrow 2x =  \pm \frac{\pi }{3} + k2\pi  \Leftrightarrow x =  \pm \frac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right)\)            

d) \({\sin ^4}x + {\cos ^4}x = \frac{1}{2}{\sin ^2}2x \Leftrightarrow \left( {{{\sin }^2}x + {{\cos }^2}x} \right) - 2{\sin ^2}x{\cos ^2}x = \frac{1}{2}{\sin ^2}2x\)

\( \Leftrightarrow 1 - \frac{1}{2}{\sin ^2}2x - \frac{1}{2}{\sin ^2}2x = 0 \Leftrightarrow {\sin ^2}2x = 1 \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \)
\( \Leftrightarrow x = \frac{\pi }{4} + k\frac{\pi }{2}\left( {k \in \mathbb{Z}} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"