Đề bài
Giải các phương trình sau:
a) \(\sin 3x = - \frac{{\sqrt 3 }}{2}\);
b) \(\tan \left( {\frac{x}{3} + {{10}^0}} \right) = - \frac{1}{{\sqrt 3 }}\);
c) \(\sin 3x - \cos 5x = 0\);
d) \(\tan 3x\tan x = 1\).
Phương pháp giải - Xem chi tiết
a) Sử dụng cách giải phương tình \(\sin x = m\) (1)
+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.
+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\sin \alpha = m\).
Khi đó, phương trình (1) tương đương với:
\(\sin x = m \Leftrightarrow \sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:
\(\sin x = \sin {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^0} + k{360^0}\\x = {180^0} - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu u, v là các biểu thức của x thì: \(\sin u = \sin v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = \pi - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
b) Sử dụng cách giải phương tình \(\cos \,x = m\) (2)
+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.
+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\cos \,\alpha = m\).
Khi đó, phương trình (1) tương đương với:
\(\cos x = m \Leftrightarrow \cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:
\(\cos x = \cos {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}\cos = {\alpha ^0} + k{360^0}\\\cos = - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu u, v là các biểu thức của x thì: \(\cos u = \cos v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
c) Sử dụng cách giải phương trình \(\tan \,x = m\left( 3 \right)\)
Phương trình (3) luôn có nghiệm với mọi giá trị của tham số m.
Luôn tồn tại duy nhất số \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thoả mãn \(\tan \alpha = m\)
Khi đó, phương trình (3) tương đương với:
\(\tan x = m \Leftrightarrow \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\)
- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:
\(\tan x = \tan {\alpha ^0} \Leftrightarrow x = {\alpha ^0} + k{180^0}\left( {k \in \mathbb{Z}} \right)\)
- Nếu u, v là các biểu thức của x thì: \(\tan u = \tan v \Leftrightarrow u = v + k\pi \left( {k \in \mathbb{Z}} \right)\)
Lời giải chi tiết
a) \(\sin 3x = - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin 3x = \sin \left( { - \frac{\pi }{3}} \right) \Leftrightarrow \left[ \begin{array}{l}3x = - \frac{\pi }{3} + k2\pi \\3x = \pi + \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = \frac{{4\pi }}{9} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
b) \(\tan \left( {\frac{x}{3} + {{10}^0}} \right) = - \frac{1}{{\sqrt 3 }} \Leftrightarrow \tan \left( {\frac{x}{3} + {{10}^0}} \right) = \tan \left( { - {{30}^0}} \right) \Leftrightarrow \frac{x}{3} + {10^0} = - {30^0} + k{180^0}\)
\(x = - {120^0} + k{540^0}\left( {k \in \mathbb{Z}} \right)\)
c)\(\sin 3x - \cos 5x = 0 \Leftrightarrow \sin 3x = \sin \left( {\frac{\pi }{2} - 5x} \right) \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{2} - 5x + k2\pi \\3x = \pi - \left( {\frac{\pi }{2} - 5x} \right) + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{16}} + k\frac{\pi }{4}\\x = \frac{{ - \pi }}{4} - k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
d) Điều kiện: \(\cos 3x \ne 0,\cos x \ne 0 \Leftrightarrow \cos 3x \ne 0\)
\(\tan 3x\tan x = 1 \Leftrightarrow \tan 3x = \cot x \Leftrightarrow \tan 3x = \tan \left( {\frac{\pi }{2} - x} \right) \Leftrightarrow 3x = \frac{\pi }{2} - x + k\pi \)
\(x = \frac{\pi }{8} + k\frac{\pi }{4}\left( {k \in \mathbb{Z}} \right)\) (thỏa mãn)