Đề bài
Hai sóng âm có phương trình lần lượt là
\({f_1}\left( t \right) = C\sin \omega t\) và \({f_2}\left( t \right) = C\sin \left( {\omega t + \alpha } \right)\).
Hai sóng này giao thoa với nhau tạo ra một âm kết hợp có phương trình
\(f(t) = {f_1}\left( t \right) + {f_2}\left( t \right) = C\sin \omega t + C\sin \left( {\omega t + \alpha } \right)\).
a) Sử dụng công thức cộng chỉ ra rằng hàm số f (t) có thể viết được dưới dạng \(f(t) = {\rm{A}}\sin \omega t + {\rm{B}}\cos \omega t\), ở đó A, B là hai hằng số phụ thuộc vào \(\alpha \).
b) Khi \(C = 10\) và \(\alpha = \frac{\pi }{3}\), hãy tìm biên độ và pha ban đầu của sóng âm kết hợp, tức là tìm hai hằng số \(k\) và \(\varphi \) sao cho \(f(t) = k\sin \left( {\omega t + \varphi } \right)\).
Phương pháp giải - Xem chi tiết
Áp dụng công thức cộng và công thức biến tổng thành tích, biến đổi về dạng đề bài yêu cầu.
Lời giải chi tiết
a) Ta có
\(\begin{array}{l}f(t) = {f_1}\left( t \right) + {f_2}\left( t \right)\\ = C\sin \omega t + C\sin \left( {\omega t + \alpha } \right) = C\left( {\sin \omega t + \sin \left( {\omega t + \alpha } \right)} \right)\\ = C\left( {\sin \omega t + \sin \omega t.\cos \alpha + \cos \omega t.\sin \alpha } \right)\\ = C\sin \omega t(1 + \cos \alpha ) + C.\sin \alpha .\cos \omega t\\ = A\sin \omega t + B\cos \omega t\end{array}\)
Vậy \(f(t) = A\sin \omega t + B\cos \omega t\) với \(A = C(1 + \cos \alpha )\); \(B = C\sin \alpha \).
b) Ta có
\(\begin{array}{l}f(t) = C\sin \omega t + C\sin \left( {\omega t + \alpha } \right) = C\left( {2\sin \frac{{\omega t + \omega t + \alpha }}{2}\cos \frac{{\omega t - \left( {\omega t + \alpha } \right)}}{2}} \right)\\\,\,\,\,\,\,\,\,\,\,\, = C.2\sin \frac{{2\omega t + \alpha }}{2}\cos \frac{\alpha }{2} = 2C\sin \left( {\omega t + \frac{\alpha }{2}} \right).\cos \frac{\alpha }{2}\end{array}\)
Khi \(C = 10\) và \(\alpha = \frac{\pi }{3}\), ta có
\(f(t) = 2.10.\sin \left( {\omega t + \frac{{\frac{{2\pi }}{3}}}{2}} \right).\cos \frac{{\frac{{2\pi }}{3}}}{2} = 20\sin \left( {\omega t + \frac{\pi }{3}} \right)\cos \frac{\pi }{3} = 10\sin \left( {\omega t + \frac{\pi }{3}} \right)\)
Vậy biên độ và pha ban đầu của sóng âm kết hợp lần lượt là k =10 và \(\varphi = \frac{\pi }{3}\).