Giải bài 1.55 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:02:52

Đề bài

Rút gọn các biểu thức sau

a) \(\frac{{\sin ({{45}^0} + \alpha ) - \cos ({{45}^0} + \alpha )}}{{\sin ({{45}^0} + \alpha ) + \cos ({{45}^0} + \alpha )}}\);                    

b) \(\frac{{\sin 2\alpha  + \sin \alpha }}{{1 + \cos 2\alpha  + \cos \alpha }}\);

c) \(\frac{{1 + \cos \alpha  - \sin \alpha }}{{1 - \cos \alpha  - \sin \alpha }}\);

d) \(\frac{{\sin \alpha  + \sin 3\alpha  + \sin 5\alpha }}{{\cos \alpha  + \cos 2\alpha  + \cos 5\alpha }}\).

Phương pháp giải - Xem chi tiết

Áp dụng công thức cộng, công thức cơ bản, công thức góc nhân đôi, công thức biên đổi tổng thành tích để biến đổi linh hoạt, rút gọn

\(\begin{array}{l}\cos (\alpha  + \beta ) = \cos \alpha \cos \beta  - \sin \alpha .\sin \beta \\\sin (\alpha  + \beta ) = \sin \alpha \cos \beta  + \cos \alpha .\sin \beta \end{array}\)

\(\frac{{\sin a}}{{\cos a}} = \tan a\); \(\frac{{\cos a}}{{\sin a}} = \cot a\)

\(\cos 2\alpha  = 2{\cos ^2}\alpha  - 1\);

\(\sin 2\alpha  = 2\sin \alpha \cos \alpha \);

\(\begin{array}{l}\cos a + \cos b = 2\cos \frac{{a + b}}{2}\cos \frac{{a - b}}{2}\\\sin a + \sin b = 2\sin \frac{{a + b}}{2}\cos \frac{{a - b}}{2}\end{array}\)

Lời giải chi tiết

a) Ta có

\(\begin{array}{l}\frac{{\sin ({{45}^0} + \alpha ) - \cos ({{45}^0} + \alpha )}}{{\sin ({{45}^0} + \alpha ) + \cos ({{45}^0} + \alpha )}}\\ = \frac{{\sin {{45}^0}\cos \alpha  + \cos {{45}^0}\sin \alpha  - (\cos {{45}^0}\cos \alpha  - \sin {{45}^0}\sin \alpha )}}{{\sin {{45}^0}\cos \alpha  + \cos {{45}^0}\sin \alpha  + (\cos {{45}^0}\cos \alpha  - \sin {{45}^0}\sin \alpha )}}\\ = \frac{{\frac{{\sqrt 2 }}{2}\cos \alpha  + \frac{{\sqrt 2 }}{2}\sin \alpha  - \left( {\frac{{\sqrt 2 }}{2}\cos \alpha  - \frac{{\sqrt 2 }}{2}\sin \alpha } \right)}}{{\frac{{\sqrt 2 }}{2}\cos \alpha  + \frac{{\sqrt 2 }}{2}\sin \alpha  + \left( {\frac{{\sqrt 2 }}{2}\cos \alpha  - \frac{{\sqrt 2 }}{2}\sin \alpha } \right)}}\\ = \frac{{\sqrt 2 \sin \alpha }}{{\sqrt 2 \cos \alpha }} = \tan \alpha .\end{array}\)

b) Ta có

\(\begin{array}{l}\frac{{\sin 2\alpha  + \sin \alpha }}{{1 + \cos 2\alpha  + \cos \alpha }} = \frac{{2\sin \alpha .\cos \alpha  + \sin \alpha }}{{1 + 2{{\cos }^2}\alpha  - 1 + \cos \alpha }}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{\sin \alpha (2\cos \alpha  + 1)}}{{2{{\cos }^2}\alpha  + \cos \alpha }}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{\sin \alpha .(2\cos \alpha  + 1)}}{{\cos \alpha .(2\cos \alpha  + 1)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{\sin \alpha }}{{\cos \alpha }} = \tan \alpha .\end{array}\)

c) Ta có

\(\begin{array}{l}\frac{{1 + \cos \alpha  - \sin \alpha }}{{1 - \cos \alpha  - \sin \alpha }}\\ = \frac{{1 + 2{{\cos }^2}\frac{\alpha }{2} - 1 - 2\sin \frac{\alpha }{2}\cos \frac{\alpha }{2}}}{{1 - \left( {1 - 2{{\sin }^2}\frac{\alpha }{2}} \right) - 2\sin \frac{\alpha }{2}\cos \frac{\alpha }{2}}}\\ = \frac{{2{{\cos }^2}\frac{\alpha }{2} - 2\sin \frac{\alpha }{2}\cos \frac{\alpha }{2}}}{{2{{\sin }^2}\frac{\alpha }{2} - 2\sin \frac{\alpha }{2}\cos \frac{\alpha }{2}}}\\ = \frac{{2\cos \frac{\alpha }{2}.\left( {\cos \frac{\alpha }{2} - \sin \frac{\alpha }{2}} \right)}}{{2\sin \frac{\alpha }{2}.\left( {\sin \frac{\alpha }{2} - \cos \frac{\alpha }{2}} \right)}}\\ =  - \frac{{\cos \frac{\alpha }{2}}}{{\sin \frac{\alpha }{2}}} =  - \cot \frac{\alpha }{2}.\end{array}\)

d) Ta có:

\(\begin{array}{l}\frac{{\sin \alpha  + \sin 3\alpha  + \sin 5\alpha }}{{\cos \alpha  + \cos 3\alpha  + \cos 5\alpha }}\\ = \frac{{\left( {\sin \alpha  + \sin 5\alpha } \right) + \sin 3\alpha }}{{\left( {\cos \alpha  + \cos 5\alpha } \right) + \cos 3\alpha }}\\ = \frac{{2\sin \frac{{\alpha  + 5\alpha }}{2}\cos \frac{{\alpha  - 5\alpha }}{2} + \sin 3\alpha }}{{2\cos \frac{{\alpha  + 5\alpha }}{2}\cos \frac{{\alpha  - 5\alpha  + \cos 3\alpha }}{2}}}\\ = \frac{{2\sin 3\alpha .\cos ( - 2\alpha ) + \sin 3\alpha }}{{2\cos 3\alpha \cos ( - 2\alpha ) + \cos 3\alpha }}\\ = \frac{{\sin 3\alpha (2\cos ( - 2\alpha ) + 1)}}{{\cos 3\alpha (2\cos ( - 2\alpha ) + 1)}} = \frac{{\sin 3\alpha }}{{\cos 3\alpha }} = \tan 3\alpha .\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"