Giải bài 2.11 trang 36 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:03:05

Đề bài

Mỗi dãy số \(\left( {{u_n}} \right)\) sau có phải là một cấp số cộng không? Nếu có, hãy tìm số hạng đầu và công sai của nó:

a) \({u_n} = 4 - 3n\);                                  

b) \({u_n} = {n^2} + 1;\);

c) \({u_n} = 2n + 5\);                                 

d) \({u_1} = 3,{u_{n + 1}} = {u_n} + n\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về cấp số cộng: Cấp số cộng \(\left( {{u_n}} \right)\) với công thức d được cho bởi công thức: \({u_n} = {u_{n - 1}} + d\) với \(n \ge 2\)

Lời giải chi tiết

a) \({u_n} = 4 - 3n\) nên \({u_{n + 1}} = 4 - 3\left( {n + 1} \right) = 1 - 3n\)

Do đó, \({u_{n + 1}} - {u_n} = \left( {1 - 3n} \right) - \left( {4 - 3n} \right) =  - 3\forall n.\) Vậy dãy số trên là cấp số cộng với số hạng đầu là 4, công sai là

b) \({u_n} = {n^2} + 1\) nên \({u_{n + 1}} = {\left( {n + 1} \right)^2} + 1 = {n^2} + 2n + 2\)

Do đó, \({u_{n + 1}} - {u_n} = \left( {{n^2} + 2n + 2} \right) - \left( {{n^2} + 1} \right) = 2n + 1,\) phụ thuộc vào n.

Vậy dãy số trên không là cấp số cộng.

c) \({u_n} = 2n + 5\) nên \({u_{n + 1}} = 2\left( {n + 1} \right) + 5 = 2n + 7\)

Do đó, \({u_{n + 1}} - {u_n} = \left( {2n + 7} \right) - \left( {2n + 5} \right) = 2\forall n.\) Vậy dãy số trên là cấp số cộng.

d) Từ hệ thức truy hồi ta có \({u_{n + 1}} - {u_n} = n,\) phụ thuộc vào n. Vậy dãy số không là cấp số cộng.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"