Giải bài 2.25 trang 39 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:03:07

Đề bài

Tính các tổng sau:

a) \(1 + 4 + 16 + 64 + ... + {4^9}\)                                

b) \(\frac{1}{3} + \frac{2}{3} + \frac{{{2^2}}}{3} + ... + \frac{{{2^{12}}}}{3}\)

Phương pháp giải - Xem chi tiết

Cho cấp số nhân \(\left( {{u_n}} \right)\) với công bội \(q \ne 1\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\). Khi đó, \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\)

Lời giải chi tiết

a) Ta nhận thấy các số hạng của tổng là cấp số nhân với \({u_1} = 1,\) công bội \(q = 4\) và có 10 số hạng. Vậy \(1 + 4 + 16 + 64 + ... + {4^9} = 1.\frac{{1 - {4^{10}}}}{{1 - 4}} = 349\;525\)

b) Ta nhận thấy các số hạng của tổng là cấp số nhân với \({u_1} = \frac{1}{3},\) công bội \(q = 2\) và có 13 số hạng. Vậy \(\frac{1}{3} + \frac{2}{3} + \frac{{{2^2}}}{3} + ... + \frac{{{2^{12}}}}{3} = \frac{1}{3}.\frac{{1 - {2^{13}}}}{{1 - 2}} = \frac{{8\;191}}{3}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"