Giải bài 2.38 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:03:11

Đề bài

Tổng \(1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^n}}}\)bằng

A.\(2 + \frac{1}{{{2^n}}}\)             

B. \(2 - \frac{1}{{{2^{n - 1}}}}\)              

C.\(2 - \frac{1}{{{2^{n + 1}}}}\)                

D. \(2 - \frac{1}{{{2^n}}}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính tổng của cấp số nhân \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).

Lời giải chi tiết

Đáp án D.

Dãy số \(1;\frac{1}{2};\frac{1}{{{2^2}}};...;\frac{1}{{{2^n}}}\)là cấp số nhân với \({u_1} = 1;\,\,q = \frac{1}{2}\). Cấp số nhân này có n+1 số hạng. Nên:

\({S_{n + 1}} = \frac{{{u_1}\left( {1 - {q^{n + 1}}} \right)}}{{1 - q}} = \frac{{1\left( {1 - \frac{1}{{{2^{n + 1}}}}} \right)}}{{1 - \frac{1}{2}}} = 2\left( {1 - \frac{1}{{{2^{n + 1}}}}} \right) = 2 - \frac{1}{{{2^n}}}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"