Giải bài 2.36 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:03:11

Đề bài

Cho cấp số cộng \({u_1} =  - 2,\,\,{u_9} = 22\). Tổng của 50 số hạng đầu của cấp số cộng này là

A. 3570               

B. 3575               

C. 3576               

D. 3580.

Phương pháp giải - Xem chi tiết

Sử dụng công thức số hạng tổng quát \({u_n} = {u_1} + \left( {n - 1} \right)d\) để tìm công sai và áp dụng công thức tính tổng \({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\).

Lời giải chi tiết

Đáp án B.

\({u_9} = {u_1} + \left( {9 - 1} \right)d \Rightarrow 22 =  - 2 + 8d \Rightarrow 8d = 24 \Rightarrow d = 3.\)

\({S_{50}} = \frac{{50}}{2}\left[ {2.( - 2) + \left( {50 - 1} \right).3} \right] = 3575\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"