Đề bài
Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến d và một điểm O nằm ngoài cả hai mặt phẳng đó. Gọi A, B là hai điểm phân biệt thuộc mặt phẳng (P) sao cho AB cắt d tại C. Gọi D, E lần lượt là giao điểm của hai đường thẳng OA, OB và mặt phẳng (Q). Chứng minh rằng ba điểm C, D, E thẳng hàng.
Phương pháp giải - Xem chi tiết
Chứng minh ba điểm đó cùng thuộc một đường thẳng (giao tuyến của hai mặt phẳng)
Lời giải chi tiết
C thuộc AB nằm trong mặt phẳng (ABO), C lại nằm trên giao tuyến của (Q) và (P) nên C là điểm chung của mặt phẳng (ABO) và (Q). C nằm trên giao tuyến của (ABO) và (Q).
D là giao điểm của hai đường thẳng OA và mặt phẳng (Q) nên D nằm trên giao tuyến của (ABO) và (Q).
E là giao điểm của hai đường thẳng OB và mặt phẳng (Q) nên D nằm trên giao tuyến của (ABO) và (Q).
Vậy C, D, E cùng thuộc giao tuyến của hai mặt phẳng (ABO) và (Q) nên chúng thẳng hàng.