Giải bài 4.24 trang 63 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:04:00

Đề bài

Cho tứ diện ABCD. Gọi G và H lần lượt là trọng tâm của hai tam giác ABC và ACD. Chứng minh rằng GH//(BCD)

Phương pháp giải - Xem chi tiết

Nếu đường thẳng a không nằm trong mặt phẳng (P) và a song song với một đường thẳng nằm trong mặt phẳng (P) thì a song song với (P)

Lời giải chi tiết

Gọi E, F lần lượt là trung điểm của các cạnh BC, CD. Vì G là trọng tâm của tam giác ABC nên A, G, E thẳng hàng và \(\frac{{AG}}{{AE}} = \frac{2}{3}\)

Tương tự ta có A, H, F thẳng hàng và \(\frac{{AH}}{{AF}} = \frac{2}{3}.\)

Do đó, \(\frac{{AG}}{{AE}} = \frac{{AH}}{{AF}}\)

Trong tam giác AEF có: \(\frac{{AG}}{{AE}} = \frac{{AH}}{{AF}}\), theo định lí Thalès đảo ta có GH//EF, mà \(EF \subset \left( {BCD} \right)\) nên GH//(BCD) 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"