Đề bài
Cho ba mặt phẳng (P), (Q), (R) đôi một song song với nhau. Đường thẳng d cắt các mặt phẳng (P), (Q), (R) lần lượt tại A, B, C. Đường thẳng d’ cắt các mặt phẳng (P), (Q), (R) lần lượt tại A’, B’, C’. Biết rằng \(\frac{{AB}}{{AC}} = \frac{2}{3}\), tỉ số \(\frac{{A'B'}}{{A'C'}}\) bằng
A. \(\frac{1}{3}\)
B. \(\frac{2}{3}\)
C. \(\frac{3}{2}\)
D. \(\frac{1}{2}\).
Phương pháp giải - Xem chi tiết
Định lí Thalès trong không gian: Ba mặt phẳng đôi một song song chắn hai cát tuyến phân biệt bất kì những đoạn thẳng tỉ lệ.
Lời giải chi tiết
Đáp án B.
Áp dụng định lí Thalès cho ba mặt phẳng đôi một song song (P), (Q), (R) và hai cát tuyến d, d’ ta có: \(\frac{{A'B'}}{{A'C'}} = \frac{{AB}}{{AC}} = \frac{2}{3}\)