Đề bài
Cho dãy số \(\left( {{u_n}} \right)\) có tính chất \(\left| {{u_n} - \frac{n}{{n + 1}}} \right| \le \frac{1}{{{n^2}}}\). Tính \(\mathop {\lim }\limits_{n \to + \infty } {u_n}\)
Phương pháp giải - Xem chi tiết
Ta nói dãy số \(\left( {{u_n}} \right)\) có giới hạn là 0 khi n dần tới dương vô cực, nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\) hay \({u_n} \to + \infty \) khi \(n \to + \infty \).
Lời giải chi tiết
\(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} - \frac{n}{{n + 1}}} \right) = \mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} - 1} \right) = 0\)
Do đó, \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 1\)