Giải bài 5.23 trang 86 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:04:27

Đề bài

Tìm tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\;\;\;khi\;x < 1\\mx + 1\;\;khi\;x \ge 1\end{array} \right.\) liên tục trên \(\mathbb{R}\).

Phương pháp giải - Xem chi tiết

Hàm số \(y = f\left( x \right)\) liên tục tại \({x_0}\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = f\left( {{x_0}} \right)\)

Lời giải chi tiết

Ta có: \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x + 1} \right) = 2\),

\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {mx + 1} \right) = m + 1 = f\left( 1 \right)\)

Để hàm số f(x) liên tục trên \(\mathbb{R}\) thì \(m + 1 = 2 \Leftrightarrow m = 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"