Giải bài 5.46 trang 89 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:04:30

Đề bài

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{x(x + 1)(2x - 1)}}{{5{x^3} + x + 7}}\);

b) \(\mathop {\lim }\limits_{x \to  - \infty } ({x^3} - 1)(2 - {x^5})\);

c) \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt[3]{{{x^2} + {x^2} + 1}} - x} \right)\).

Phương pháp giải - Xem chi tiết

+ Nếu \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} =  + \infty \) và \(\mathop {\lim }\limits_{n \to  + \infty } {v_n} = a < 0\) thì \(\mathop {\lim }\limits_{n \to  + \infty } {u_n}{v_n} =  - \infty \).

Đối với những biểu thức chứa hiệu của căn, chúng ta dùng phương pháp nhân liên hợp. Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho lũy thừa cao nhất của n, rồi áp dụng các quy tắc tính giới hạn.

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{x(x + 1)(2x - 1)}}{{5{x^3} + x + 7}} = \frac{2}{5}.\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } ({x^3} - 1)(2 - {x^5}) = \mathop {\lim }\limits_{x \to  - \infty } {x^8}\left( {1 - \frac{1}{{{x^3}}}} \right)\left( {\frac{2}{{{x^5}}} - 1} \right) =  - \infty \).

c) \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt[3]{{{x^2} + {x^2} + 1}} - x} \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + 1}}{{\sqrt[3]{{{{\left( {{x^3} + {x^2} + 1} \right)}^2}}} + x\,\sqrt[3]{{{x^3} + {x^2} + 1}} + {x^2}}} = \frac{1}{3}.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"