Giải bài 5.35 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:04:32

Đề bài

Cho \(f(x) = \frac{{{x^2} - x}}{{|x|}}\). Khi đó, giới hạn \(\mathop {\lim }\limits_{x \to 0} f(x)\) là

A. 2                     

B. - 1                   

C. 1                     

D. Không tồn tại.

Phương pháp giải - Xem chi tiết

Dựa vào lý thuyết: Nếu \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) \ne \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) thì không tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\). Ta tính giới hạn trái và giới hạn phải để chứng minh giới hạn trên không tồn tại.

Lời giải chi tiết

Đáp án D.

Ta có:\(\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{{x^2} - x}}{{|x|}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{{x^2} - x}}{{ - x}} = \mathop {\lim }\limits_{x \to {0^ - }} ( - x + 1) = 1\).

Mà: \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2} - x}}{{|x|}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2} - x}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} (x - 1) =  - 1 \ne \mathop {\lim }\limits_{x \to {0^ - }} f(x)\).

Vậy không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 0} f(x)\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"