Đề bài
Giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 1}}{{\sqrt {x - 1} }}\) là
A. \( + \infty \)
B. Không tồn tại
C. 2
D. 0.
Phương pháp giải - Xem chi tiết
Áp dụng các quy tắc tính giới hạn, lưu ý điều kiện xác định của căn.
Lời giải chi tiết
Đáp án D.
\(x \to {1^ + }\)nên \(x > 1 \Rightarrow x - 1 > 0\). Vậy \(\sqrt {x - 1} \)có nghĩa.
\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 1}}{{\sqrt {x - 1} }} = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1} = \sqrt {1 - 1} = 0\).