Đề bài
Khi gửi tiết kiệm \(P\) (đồng) theo thể thức trả lãi kép định kì với lãi suất mỗi kì là \(r\) ( \(r\) cho dưới dạng số thập phân) thì số tiền \(A\) (cả vốn lẫn lãi) nhận được sau \(t\) kì gửi là \(A = P{(1 + r)^t}\) (đồng). Tính thời gian gửi tiết kiệm cần thiết đề số tiền ban đầu tăng gấp đôi.
Phương pháp giải - Xem chi tiết
Sử dụng công thức lãi kép
Khi gửi tiết kiệm \(P\) (đồng) theo thể thức trả lãi kép định kì với lãi suất mỗi kì là \(r\) ( \(r\) cho dưới dạng số thập phân) thì số tiền \(A\) (cả vốn lẫn lãi) nhận được sau \(t\) kì gửi là \(A = P{(1 + r)^t}\) (đồng). Tính thời gian gửi tiết kiệm cần thiết đề số tiền ban đầu tăng gấp đôi.
Để số tiền ban đầu tăng gấp đôi thì \(A = 2P\).
Thay \(A = 2P\) vào công thức lãi kép \(A = P{(1 + r)^t}\), suy ra \(t\)
Lời giải chi tiết
Để số tiền ban đầu tăng gấp đôi thì \(A = 2P\).
Thay \(A = 2P\) vào công thức lãi kép ta có: \(2P = P{(1 + r)^t}\), suy ra