Giải bài 6.16 trang 10 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:04:38

Đề bài

So sánh các số sau:

a) \({\rm{lo}}{{\rm{g}}_3}4\) và \({\rm{lo}}{{\rm{g}}_4}\frac{1}{3}\)

b) \({2^{{\rm{lo}}{{\rm{g}}_6}3}}\) và \({3^{{\rm{lo}}{{\rm{g}}_5}\frac{1}{2}}}\).

Phương pháp giải - Xem chi tiết

Đưa bài toán về so sánh hai lũy thừa, hai logarit cùng cơ số

Áp dụng tính chất

Nếu \(a > 1\) thì \({\log _a}^m > {\log _a}^n \Leftrightarrow m > n > 0\)

Nếu \(0 < a < 1\) thì \({\log _a}^m > {\log _a}^n \Leftrightarrow 0 < m < n\)

Nếu \(a > 1\) thì \({a^m} > {a^n}\) khi và chỉ khi \(m > n\).

Nếu \(0 < a < 1\) thì \({a^m} > {a^n}\) khi và chỉ khi \(m < n\).

Lời giải chi tiết

a) \({\log _4}\frac{1}{3} < {\log _3}4\) vì \({\log _4}\frac{1}{3} < 1 < {\log _3}4\)

b) Ta có \({2^{{{\log }_6}3}} = {3^{{{\log }_6}2}} > {3^{{{\log }_6}\frac{1}{2}}}\) do \({\log _6}2 > {\log _6}\frac{1}{2};3 > 1\)

Vậy \({2^{{{\log }_6}3}} > {3^{{{\log }_6}\frac{1}{2}}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"