Giải bài 6.33 trang 19 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:04:47

Đề bài

Giải các bát phương trình mũ sau:

a) \({2^{2x - 3}} > \frac{1}{4}\)

b) \({\left( {\frac{1}{2}} \right)^{{x^2}}} \ge {\left( {\frac{1}{2}} \right)^{5x - 6}}\);

c) \({25^x} \le {5^{4x - 3}}\);

d) \({9^x} - {3^x} - 6 \le 0\).

Phương pháp giải - Xem chi tiết

Bất phương trình mũ dạng cơ bản có dạng \({a^x} > b\) (hoặc \({a^x} \ge b,{a^x} < b,{a^x} \le b\)) với \(a > 0,a \ne 1.\)

Xét bất phương trình dạng \({a^x} > b\):

Nếu \(b \le 0\) thì tập nghiệm của bất phương trình là \(\mathbb{R}.\)

Nếu \(b > 0\) thì bất phương trình tương đương với \({a^x} > {a^{{{\log }_a}b}}.\)

+/  Với \(a > 1,\)nghiệm của bất phương trình là \(x > {\log _a}b\).

+/  Với \(0 < a < 1,\)nghiệm của bất phương trình là \(x < {\log _a}b.\)

Chú ý:

Các bất phương trình mũ cơ bản còn lại được giải tương tự.

Nếu \(a > 1\) thì \({a^u} > {a^v} \Leftrightarrow u > v.\)

Nếu \(0 < a < 1\) thì \({a^u} > {a^v} \Leftrightarrow u < v.\)

Giải bất phương trình bằng cách giải bất phương trình bậc hai

Lời giải chi tiết

a) \({2^{2x - 3}} > \frac{1}{4} \Leftrightarrow {2^{2x - 3}} > {2^{ - 2}} \Leftrightarrow 2x - 3 >  - 2 \Leftrightarrow x > \frac{1}{2}\).

b) \({\left( {\frac{1}{2}} \right)^{{x^2}}} \ge {\left( {\frac{1}{2}} \right)^{5x - 6}} \Leftrightarrow {x^2} \le 5x - 6 \Leftrightarrow {x^2} - 5x + 6 \le 0 \Leftrightarrow 2 \le x \le 3\).

c) \({25^x} \le {5^{4x - 3}} \Leftrightarrow {5^{2x}} \le {5^{4x - 3}} \Leftrightarrow 2x \le 4x - 3 \Leftrightarrow x \ge \frac{3}{2}\).

d) \({9^x} - {3^x} - 6 \le 0 \Leftrightarrow {\left( {{3^x}} \right)^2} - {3^x} - 6 \le 0 \Leftrightarrow \)\( - 2 \le {3^x} \le 3 \Leftrightarrow x \le 1.{\rm{\;}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"