Giải bài 6.32 trang 19 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:04:47

Đề bài

Giải các phương trình lôgarit sau:

a) \({\rm{lo}}{{\rm{g}}_3}\left( {4x - 1} \right) = 2\);

b) \({\rm{lo}}{{\rm{g}}_2}\left( {{x^2} - 1} \right) = {\rm{lo}}{{\rm{g}}_2}\left( {3x + 3} \right)\);

c) \({\rm{lo}}{{\rm{g}}_x}81 = 2\);

d) \({\rm{lo}}{{\rm{g}}_2}{8^x} =  - 3\).

Phương pháp giải - Xem chi tiết

Phương trình lôgarit cơ bản có dạng \({\log _a}x = b\;\;\left( {0 < a \ne 1} \right).\)

Phương trình lôgarit cơ bản \({\log _a}x = b\) có nghiệm duy nhất \(x = {a^b}.\)

Phương pháp giải phương trình lôgarit bằng cách đưa về cùng cơ số:

              Nếu \(u,v > 0\) và \(0 < a \ne 1\) thì \({\log _a}u = {\log _a}v \Leftrightarrow u = v > 0.\)

Lời giải chi tiết

a) Điều kiện: \(x > \frac{1}{4}\).

Khi đó: \({\rm{lo}}{{\rm{g}}_3}\left( {4x - 1} \right) = 2 \Leftrightarrow 4x - 1 = 9 \Leftrightarrow x = \frac{5}{2}\) (thoả mãn).

b) Điều kiện: \(x > 1\). Khi đó: \({\rm{lo}}{{\rm{g}}_2}\left( {{x^2} - 1} \right) = {\rm{lo}}{{\rm{g}}_2}\left( {3x + 3} \right) \Leftrightarrow {x^2} - 1 = 3x + 3\)

\( \Leftrightarrow {x^2} - 3x - 4 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x =  - 1{\rm{\;(loai)\;}}}\\{x = 4.}\end{array}} \right.\)

c) Điều kiện: \(0 < x \ne 1\).

Khi đó: \({\rm{lo}}{{\rm{g}}_x}81 = 2 \Leftrightarrow {x^2} = 81 \Leftrightarrow \left[ \begin{array}{l}x = 9\\x =  - 9\end{array} \right.\)

Vì \(0 < x \ne 1\) nên \(x = 9\)là nghiệm phương trình

d) \({\rm{lo}}{{\rm{g}}_2}{8^x} =  - 3 \Leftrightarrow {8^x} = {2^{ - 3}} \Leftrightarrow {2^{3x}} = {2^{ - 3}} \Leftrightarrow 3x =  - 3 \Leftrightarrow x =  - 1\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"