Giải bài 7.3 trang 26 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:04:58

Đề bài

Cho tứ diện \(ABCD\), gọi \(M\) và \(N\) lần lượt là trung điểm của \(AC\) và \(BD\). Biết \(MN = a\sqrt 3 ;AB = 2\sqrt 2 a\) và \(CD = 2a\). Chứng minh rằng đường thẳng \(AB\) vuông góc với đường thẳng \(CD\).

Phương pháp giải - Xem chi tiết

Chứng minh góc giữa đường thẳng \(AB\) và \(CD\)  bằng \({90^ \circ }\)

+ Bước 1: Tính góc giữa hai đường thẳng \(AB\) và \(CD\) bằng \({90^ \circ }\)

+ Bước 2: Kết luận  đường thẳng \(AB\) vuông góc với đường thẳng \(CD\).

Chú ý sử dụng định lý đảo Pytago để chứng minh tam giác là tam giác vuông

Lời giải chi tiết

Lấy \(K\) là trung điểm của cạnh \(BC\), ta có: \(NK\) và \(MK\) lần lượt là đường trung bình của tam giác \(BCD\) và tam giác \(ABC\) nên \(NK = a,MK = a\sqrt 2 \).

Do đó, \(M{N^2} = 3{a^2} = N{K^2} + M{K^2}\) suy ra tam giác \(MNK\) vuông tại \(K\), hay \(MK \bot NK\), mà \(MK//AB\) và \(NK//CD\) nên \(\left( {AB,CD} \right) = \left( {MK,NK} \right) = {90^ \circ }\), hay \(AB \bot CD\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"