Giải bài 7.14 trang 30 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:05:08

Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA \bot \left( {ABCD} \right)\), \(SA = a\sqrt 2 \).

a) Tính góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {ABCD} \right)\).

b) Tính tang góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {SAB} \right)\).

Phương pháp giải - Xem chi tiết

a) Chứng minh có \(AC\) là hình chiếu vuông góc của \(SC\) lên mặt phẳng \(\left( {ABCD} \right)\).

Khi đó \(\left( {\widehat {SC,\left( {ABCD} \right)}} \right) = \left( {\widehat {SC,AC}} \right) = \widehat {SCA}\).

Tính \(\widehat {SCA}\).

b) Chứng minh \(SB\) là hình chiếu vuông góc của \(SC\) lên mp\(\left( {SAB} \right)\).

Khi đó \(\left( {\widehat {SC,\left( {SAB} \right)}} \right) = \left( {\widehat {SC,SB}} \right) = \widehat {B{\rm{S}}C}\).

Tính \(\widehat {BSC}\).

Lời giải chi tiết

a) Ta có \(SA \bot \left( {ABCD} \right) \Rightarrow AC\) là hình chiếu vuông góc của \(SC\) lên mặt phẳng \(\left( {ABCD} \right)\).

Khi đó \(\left( {\widehat {SC,\left( {ABCD} \right)}} \right) = \left( {\widehat {SC,AC}} \right) = \widehat {SCA}\).

Mặt khác tam giác \(SAC\) vuông tại \(A\) có \(AC = a\sqrt 2 \) và \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = 1 \Rightarrow \widehat {SCA} = 45^\circ \).

Vậy đường thẳng \(SC\) hợp với  mặt phẳng \(\left( {ABCD} \right)\) một góc \(45^\circ \).

b) Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow SB\) là hình chiếu vuông góc của \(SC\) lên mp\(\left( {SAB} \right)\).

Khi đó \(\left( {\widehat {SC,\left( {SAB} \right)}} \right) = \left( {\widehat {SC,SB}} \right) = \widehat {B{\rm{S}}C}\).

Mặt khác tam giác \(SBC\) vuông tại \(B\) có \(BC = a,SB = \sqrt {S{A^2} + A{B^2}}  = a\sqrt 3 \).

Do đó \(\tan \widehat {BSC} = \frac{{BC}}{{SB}} = \frac{{\sqrt 3 }}{3}\).

Vậy tang góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {SAB} \right)\) là \(\frac{{\sqrt 3 }}{3}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"