Giải bài 7.36 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:05:22

Đề bài

Cho tứ diện \(OABC\) có \(OA = OB = OC = a\) và \(\widehat {AOB} = 90^\circ ;\) \(\widehat {BOC} = 60^\circ \); \(\widehat {COA} = 120^\circ \). Tính theo \(a\) thể tích khối tứ diện \(OABC\).

Phương pháp giải - Xem chi tiết

Áp dụng công thức tính thể tích khối chóp: \(S = \frac{1}{3}Bh\).

Trong đó: \(B\) là diện tích đa giác đáy

\(h\) là đường cao của hình chóp

Bước 1: Xác định đường cao của hình chóp \(O.ABC\) có cạnh bên bằng nhau. Chân đường cao là tâm của đáy. Tính chiều cao

Bước 2: Tính diện tích đáy

Bước 3: Tính thể tích khối tứ diện \(V = \frac{1}{3}OH.{S_{ABC}}\)

Lời giải chi tiết

Ta có: \(AB = a\sqrt 2 \), \(BC = a\), \(CA = a\sqrt 3 \), tam giác \(ABC\) vuông tại \(B\).

Kẻ \(OH\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) tại \(H\).

Vì \(OA = OB = OC\) nên \(HA = HB = HC\), hay \(H\) là trung điểm của \(AC\).

Xét tam giác \(OAH\) vuông tại \(H\), theo định lí Pythagore ta tính được: \(OH = \frac{a}{2}\).

Vậy \({V_{OABC}} = \frac{1}{3} \cdot {S_{ABC}} \cdot OH = \frac{1}{3} \cdot \frac{1}{2} \cdot a\sqrt 2  \cdot a \cdot \frac{a}{2} = \frac{{{a^3}\sqrt 2 }}{{12}}{\rm{.\;}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"