Giải bài 8.12 trang 51 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:05:37

Đề bài

 Gieo hai con xúc xắc cân đối. Xét biến cố \(A\): “Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm”, \(B\): “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”. Chứng tỏ rằng \(A\) và \(B\) không độc lập.

Phương pháp giải - Xem chi tiết

Tính \(P(A),P(B),P(AB)\)

\(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\) suy ra hai biến cố \(A\) và \(B\) độc lập với nhau

\(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) suy ra hai biến cố \(A\) và \(B\) không độc lập với nhau

Lời giải chi tiết

Tính \(P\left( A \right)\)

Xét biến cố đối \(\overline A :\) “ Cả hai con xúc xắc không xuất hiện mặt 5 chấm”,\(\overline A  = \left\{ {\left( {a,b} \right):a,b \in \left\{ {1;2;3;4;6} \right\}} \right\}\). Ta có \(n\left( {\overline A } \right) = 25\); \(n\left( \Omega  \right) = 36\).

Vậy \(P\left( {\overline A } \right) = \frac{{25}}{{36}}\), do đó \(P\left( A \right) = 1 - \frac{{25}}{{36}} = \frac{{11}}{{36}}\).

Vậy \(P\left( A \right) = \frac{1}{4}\).

Tính \(P\left( B \right)\), Ta có \(B = \left\{ {\left( {1,6} \right);\left( {2,5} \right);\left( {3,4} \right);\left( {4,3} \right);\left( {5,2} \right);\left( {6,1} \right)} \right\}\), \(n\left( B \right) = 6\).

Vậy \(P\left( B \right) = \frac{6}{{36}}\).

Tính \(P\left( {AB} \right)\), Ta có \(AB = A \cap B = \left\{ {\left( {2,5} \right);\left( {5,2} \right)} \right\}\), \(n\left( {A \cap B} \right) = 2\).

Vậy \(P\left( {AB} \right) = \frac{2}{{36}}\).

Ta có \(P\left( {AB} \right) = \frac{2}{{36}} = \frac{{72}}{{{{36}^2}}};P\left( A \right).P\left( B \right) = \frac{{11}}{{36}}.\frac{6}{{36}} = \frac{{66}}{{{{36}^2}}}\).

Suy ra: \(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\).

Vậy \(A\) và \(B\) không độc lập.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"