Giải bài 8.11 trang 51 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:05:37

Đề bài

Gieo hai đồng xu cân đối. Xét biến cố \(A\): “Cả hai đồng xu đều ra mặt sấp”, \(B\): “Có ít nhất một  đồng xu đều ra mặt sấp”. Hỏi \(A\) và \(B\) có độc lập hay không?

Phương pháp giải - Xem chi tiết

Tính \(P(A),P(B),P(AB)\)

\(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\) suy ra hai biến cố \(A\) và \(B\) độc lập với nhau

\(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) suy ra hai biến cố \(A\) và \(B\) không độc lập với nhau

Lời giải chi tiết

Tính \(P\left( A \right)\)

Ta có \(\Omega  = \left\{ {SS,SN,NS,NN} \right\}\), \(n\left( \Omega  \right) = 4\), \(A = \left\{ {SS} \right\},n\left( A \right) = 1\).

Vậy \(P\left( A \right) = \frac{1}{4}\).

Tính \(P\left( B \right)\)

Ta có \(B = \left\{ {SS,SN,NS} \right\}\), \(n\left( B \right) = 3\).

Vậy \(P\left( B \right) = \frac{3}{4}\).

Tính \(P\left( {AB} \right)\)

Ta có \(AB = A \cap B = \left\{ {SS} \right\}\), \(n\left( {A \cap B} \right) = 1\).

Vậy \(P\left( {AB} \right) = \frac{1}{4}\).

Ta có \(P\left( {AB} \right) = \frac{1}{4} = \frac{4}{{16}} \ne P\left( A \right).P\left( B \right) = \frac{1}{4}.\frac{3}{4} = \frac{3}{{16}}\).

Vậy \(A\) và \(B\) không độc lập.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"