Đề bài
Tính (bằng định nghĩa) đạo hàm của hàm số \(y = 2{x^2} + 3x - 1\) tại điểm \({x_0} = 1\)
Phương pháp giải - Xem chi tiết
Để tính đạo hàm của hàm số \(y = f(x)\) tại điểm \({x_0} \in (a;b)\), ta thực hiện theo các bước sau:
1. Tính \(f(x) - f\left( {{x_0}} \right)\).
2. Lập và rút gọn tỉ số \(\frac{{f(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) với \(x \in (a;b),x \ne {x_0}\).
3. Tìm giới hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Lời giải chi tiết
\(y'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} + 3x - 1 - 4}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} + 3x - 5}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)(2x + 5)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (2x + 5) = 7\).