Đề bài
Cho hàm số \(f\left( x \right) = x{e^{{x^2}}} + \ln \left( {x + 1} \right)\). Tính \(f'\left( 0 \right)\) và \(f''\left( 0 \right)\).
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc tính đạo hàm
\({\left( {{e^u}} \right)^\prime } = u'.{e^u};{\left( {\ln u} \right)^\prime } = \frac{{u'}}{u}\)
Lời giải chi tiết
Đạo hàm \(f'\left( x \right) = \left( {1 + 2{x^2}} \right){e^{{x^2}}} + \frac{1}{{x + 1}}\).
\(f''\left( x \right) = \left( {6x + 4{x^3}} \right){e^{{x^2}}} - \frac{1}{{{{\left( {x + 1} \right)}^2}}}\).
Do đó \(f'\left( 0 \right) = 2\) và \(f''\left( 0 \right) = - 1\).