Giải bài 9.43 trang 65 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:05:47

Đề bài

Cho hàm số \(f\left( x \right) = x + \sqrt {4 - {x^2}} \).

a) Tìm tập xác định của hàm số đã cho.

b) Tính đạo hàm \(f'\left( x \right)\) và tìm tập xác định của \(f'\left( x \right)\).

c) Tìm \(x\) sao cho \(f'\left( x \right) = 0\).

Phương pháp giải - Xem chi tiết

Áp dụng quy tắc tính đạo hàm

Lời giải chi tiết

a) Điều kiện: \(4 - {x^2} \ge 0 \Leftrightarrow  - 2 \le x \le 2\). Tập xác định của hàm số là \(\left[ { - 2\,;\,2} \right]\).

b) Ta có: \(f'\left( x \right) = 1 + \frac{{{{\left( {4 - {x^2}} \right)}^\prime }}}{{2\sqrt {4 - {x^2}} }} = 1 - \frac{x}{{\sqrt {4 - {x^2}} }}\).

Tập xác định của \(f'\left( x \right)\) là \(\left( { - 2\,  ;\,2} \right)\).

c) Ta có:

 \(f'\left( x \right) = 1 - \frac{x}{{\sqrt {4 - {x^2}} }} = 0 \Leftrightarrow \sqrt {4 - {x^2}}  = x \Leftrightarrow \left\{ \begin{array}{l}x > 0\\4 - {x^2} = {x^2}\end{array} \right. \Leftrightarrow x = \sqrt 2 \).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"