Đề bài
Cho hàm số \(f\left( x \right) = x + \sqrt {4 - {x^2}} \).
a) Tìm tập xác định của hàm số đã cho.
b) Tính đạo hàm \(f'\left( x \right)\) và tìm tập xác định của \(f'\left( x \right)\).
c) Tìm \(x\) sao cho \(f'\left( x \right) = 0\).
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc tính đạo hàm
Lời giải chi tiết
a) Điều kiện: \(4 - {x^2} \ge 0 \Leftrightarrow - 2 \le x \le 2\). Tập xác định của hàm số là \(\left[ { - 2\,;\,2} \right]\).
b) Ta có: \(f'\left( x \right) = 1 + \frac{{{{\left( {4 - {x^2}} \right)}^\prime }}}{{2\sqrt {4 - {x^2}} }} = 1 - \frac{x}{{\sqrt {4 - {x^2}} }}\).
Tập xác định của \(f'\left( x \right)\) là \(\left( { - 2\, ;\,2} \right)\).
c) Ta có:
\(f'\left( x \right) = 1 - \frac{x}{{\sqrt {4 - {x^2}} }} = 0 \Leftrightarrow \sqrt {4 - {x^2}} = x \Leftrightarrow \left\{ \begin{array}{l}x > 0\\4 - {x^2} = {x^2}\end{array} \right. \Leftrightarrow x = \sqrt 2 \).