Giải bài 9.42 trang 65 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:05:47

Đề bài

Tính đạo hàm các hàm số sau:

a) \(y = {\left( {{x^2} - \frac{2}{x} + 4\sqrt x } \right)^3}\);

b) \(y = {2^x} + {\log _3}\left( {1 - 2x} \right)\);

c) \(y = \frac{{1 - 2x}}{{{x^2} + 1}}\);

d) \(y = \sin 2x + {\cos ^2}3x\).

Phương pháp giải - Xem chi tiết

Áp dụng quy tắc tính đạo hàm

Lời giải chi tiết

a) \(y' = 3{\left( {{x^2} - \frac{2}{x} + 4\sqrt x } \right)^2}{\left( {{x^2} - \frac{2}{x} + 4\sqrt x } \right)^\prime }\)

\( = 6{\left( {{x^2} - \frac{2}{x} + 4\sqrt x } \right)^2}\left( {x + \frac{1}{{{x^2}}} + \frac{1}{{\sqrt x }}} \right)\).

b) \(y' = {2^x}\ln 2 + \frac{{{{\left( {1 - 2x} \right)}^\prime }}}{{\left( {1 - 2x} \right)\ln 3}} = {2^x}\ln 2 - \frac{2}{{\left( {1 - 2x} \right)\ln 3}}\).

c) \(y' = \frac{{2\left( {{x^2} - x - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}\)

d) \(y' = 2\cos 2x + 2\cos 3x{\left( {\cos 3x} \right)^\prime } = 2\cos 2x + 2\cos 3x\sin 3x\)

 \( = 2\cos 2x - 3\sin 6x\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"