Đề bài
Vị trí của một vật chuyển động (tính bằng mét) sau giây được xác định bởi \(s = {t^4} - 4{t^3} - 20{t^2} + 20t,t > 0\). Gia tốc của vật tại thời điểm mà vận tốc \(v = 20{\rm{\;m}}/{\rm{s}}\) là
A. \(140\,{\rm{m/}}{{\rm{s}}^2}\).
B. \(120\,{\rm{m/}}{{\rm{s}}^2}\).
C. \(130\,{\rm{m/}}{{\rm{s}}^2}\).
D. \(100\,{\rm{m/}}{{\rm{s}}^2}\).
Phương pháp giải - Xem chi tiết
\(v(t) = s'(t)\)
\(a(t) = s''(t)\)
Lời giải chi tiết
\(\begin{array}{l}v(t) = s'(t) = 4{t^3} - 12{t^2} - 40t + 20\\a(t) = s''(t) = 12{t^2} - 24t - 40\end{array}\)\(v = 20{\rm{\;m}}/{\rm{s}} \Rightarrow v(t) = s'(t) = 4{t^3} - 12{t^2} - 40t + 20 = 20 \Leftrightarrow 4{t^3} - 12{t^2} - 40t = 0 \Leftrightarrow t = 5\)\(a(5) = s''(t) = {12.5^2} - 24.5 - 40 = 140\)