Đề bài
Cho hình lập phương \(ABCD \cdot A'B'C'D'\) có cạnh bằng \(a\). Góc giữa hai đường thẳng \(AC\) và \(BC'\) bằng
A. \({90^ \circ }\).
B. \({30^ \circ }\).
C. \({60^ \circ }\).
D. \({45^ \circ }\).
Phương pháp giải - Xem chi tiết
Phương pháp
Ta có \(AC//A'C' \Rightarrow \left( {AC,BC'} \right) = \left( {A'C',BC'} \right)\)
Nhận dạng tam giác \(BA'C'\) đều \( \Rightarrow \left( {A'C',BC'} \right) = {60^ \circ }\)
Lời giải chi tiết
Ta có \(AC//A'C' \Rightarrow \left( {AC,BC'} \right) = \left( {A'C',BC'} \right)\)
Xét tam giác \(BA'C'\) có ba cạnh là ba đường chéo của 3 hình vuông bằng nhau nên tam giác \(BA'C'\) đều. Vậy \(\left( {AC,BC'} \right) = \left( {A'C',BC'} \right) = {60^ \circ }\)
Chọn C