Giải bài 21 trang 69 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:05:58

Đề bài

Cho hình chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(a\), cạnh bên \(SA\) bằng \(a\sqrt 2 \). Khoảng cách giữa hai đường thẳng \(BD\) và \(SC\) là

A. \(\frac{{a\sqrt 6 }}{4}\).

B. \(\frac{{a\sqrt 6 }}{3}\).

C. \(\frac{{a\sqrt 6 }}{2}\).

D. \(\frac{{a\sqrt 3 }}{2}\).

Phương pháp giải - Xem chi tiết

Chứng minh \(BD \bot \left( {SAC} \right)\) tại \(O\). Kẻ \(OH \bot SC,H \in SC\).

Chứng minh \(OH\) là đoạn vuông góc chung của \(BD\) và \(SC\)

Tính \(OH\)

Lời giải chi tiết

Ta có \(\left\{ \begin{array}{l}SO \bot \left( {ABCD} \right)\\BD \bot AC\end{array} \right. \Rightarrow \left\{ \begin{array}{l}SO \bot BD\\BD \bot AC\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right)\)

Kẻ \(OH \bot SC,H \in SC\)

Ta có \(\left\{ \begin{array}{l}BD \bot \left( {SAC} \right)\\OH \subset \left( {SAC} \right)\end{array} \right. \Rightarrow OH \bot BD\)

Khoảng cách giữa hai đường thẳng \(BD\) và \(SC\) là \(OH\)

Có \(SO \bot AC \Rightarrow SO = \sqrt {S{A^2} - A{O^2}}  = \sqrt {2{a^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}  = \frac{{a\sqrt 6 }}{2}\)

\(OH = \frac{{SO.OC}}{{\sqrt {S{O^2} + O{C^2}} }} = \frac{{\frac{{a\sqrt 6 }}{2}.\frac{{a\sqrt 2 }}{2}}}{{\sqrt {{{\left( {\frac{{a\sqrt 6 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} }} = \frac{{a\sqrt 6 }}{4}\)

Chọn A

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"