Giải bài 22 trang 69 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:05:58

Đề bài

Cho hình lăng trụ \(ABC \cdot A'B'C'\) có \(AA'B'C'\) là hình tứ diền đều cạnh bằng \(a\). Thể tích khối lăng trụ \(ABC \cdot A'B'C'\) bằng

A. \(\frac{{{a^3}\sqrt 2 }}{{12}}\).

B. \(\frac{{{a^3}\sqrt 2 }}{4}\).

C. \(\frac{{{a^3}\sqrt 6 }}{3}\).

D. \(\frac{{{a^3}\sqrt 6 }}{{12}}\).

Phương pháp giải - Xem chi tiết

Gọi \(O\) là tâm đáy\(A'B'C'\),\(O\) là trọng tâm đáy\(A'B'C'\)

Suy \(AO \bot \left( {\;A'B'C'} \right)\)

Tính \(AO,\) diện tích tam giác \(A'B'C'\)

Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng \(V = AO.{S_{A'B'C'}}\)

Lời giải chi tiết

Do tứ diện \(AA'B'C'\) là hình tứ diền đều cạnh bằng \(a\).

Gọi \(O\) là tâm đáy\(A'B'C'\),\(O\) là trọng tâm đáy\(A'B'C'\)

\(A'M = \frac{{a\sqrt 3 }}{2};A'O = \frac{2}{3}A'M = \frac{{a\sqrt 3 }}{3}\)

Ta có \(AO \bot \left( {\;A'B'C'} \right) \Rightarrow AO = \sqrt {A{{A'}^2} - A'{O^2}}  = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}  = \frac{{a\sqrt 6 }}{3}\)

Diện tích tam giác \(A'B'C':S = \frac{{{a^2}\sqrt 3 }}{4}\)

Thể tích khối lăng trụ \(ABC \cdot A'B'C'\) bằng \(V = AO.{S_{A'B'C'}} = \frac{{a\sqrt 6 }}{3}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 2 }}{4}\)

Chọn B

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"