Đề bài
Giả sử \({u_n}\) là số hạng thứ \(n\) của dãy số \(\left( {{u_n}} \right)\) và \({u_n} = \frac{{{{\left( {1 + \sqrt 5 } \right)}^n} - {{\left( {1 - \sqrt 5 } \right)}^n}}}{{{2^n}\sqrt 5 }}\).
a) Chứng tỏ rằng \({u_1} = 1,{u_2} = 1\) và \({u_{n + 2}} = {u_{n + 1}} + {u_n}\) với mọi \(n \in {\mathbb{N}^{\rm{*}}}\).
Từ đó suy ra \(\left( {{u_n}} \right)\) là dãy số Fibonacci.
b) Viết 11 số hạng đầu tiên của dãy Fibonacci và 10 tỉ số \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) đầu tiên.
Tinh \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{u_{n + 1}}}}{{{u_n}}}\)
Phương pháp giải - Xem chi tiết
a) Ta có \({u_1} = 1,{u_2} = 1\) và \({u_{n + 2}} = \frac{{{{\left( {1 + \sqrt 5 } \right)}^{n + 2}} - {{\left( {1 - \sqrt 5 } \right)}^{n + 2}}}}{{{2^{n + 2}}\sqrt 5 }}\)
Áp dụng hằng đẳng thức \({a^{n + 2}} - {b^{n + 2}} = \left( {{a^{n + 1}} - {b^{n + 1}}} \right)\left( {a + b} \right) - ab\left( {{a^n} - {b^n}} \right)\)
Ta có \({u_{n + 2}} = \frac{{{{\left( {1 + \sqrt 5 } \right)}^{n + 2}} - {{\left( {1 - \sqrt 5 } \right)}^{n + 2}}}}{{{2^{n + 2}}\sqrt 5 }}\)
\( = \frac{{\left[ {{{(1 + \sqrt 5 )}^{n + 1}} - {{(1 - \sqrt 5 )}^{n + 1}}} \right]\left[ {1 + \sqrt 5 + 1 - \sqrt 5 } \right] - \left( {1 + \sqrt 5 } \right)\left( {1 - \sqrt 5 } \right)\left[ {{{(1 + \sqrt 5 )}^n} - {{(1 - \sqrt 5 )}^n}} \right]}}{{{2^{n + 2}}\sqrt 5 }}\)
\( = \frac{{\left[ {{{(1 + \sqrt 5 )}^{n + 1}} - {{(1 - \sqrt 5 )}^{n + 1}}} \right] \cdot 2 + 4 \cdot \left[ {{{(1 + \sqrt 5 )}^n} - {{(1 - \sqrt 5 )}^n}} \right]}}{{{2^{n + 2}}\sqrt 5 }}\)
\( = \frac{{{{(1 + \sqrt 5 )}^{n + 1}} - {{(1 - \sqrt 5 )}^{n + 1}}}}{{{2^{n + 1}}\sqrt 5 }} + \frac{{{{(1 + \sqrt 5 )}^n} - {{(1 - \sqrt 5 )}^n}}}{{{2^n}\sqrt 5 }} = {u_{n + 1}} + {u_n}\).
Vậy \(\left( {{u_n}} \right)\) là dãy số Fibonacci.
b) Lập bảng
\(n\) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
\({u_n}\) |
|
|
|
|
|
|
|
|
|
|
|
\(\frac{{{u_{n + 1}}}}{{{u_n}}}\) |
|
|
|
|
|
|
|
|
|
|
Thay
Tính \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{u_{n + 1}}}}{{{u_n}}}\)
Lời giải chi tiết
. a) Ta có \({u_1} = 1,{u_2} = 1\) và \({u_{n + 2}} = \frac{{{{(1 + \sqrt 5 )}^{n + 2}} - {{(1 - \sqrt 5 )}^{n + 2}}}}{{{2^{n + 2}}\sqrt 5 }}\)
\( = \frac{{\left[ {{{(1 + \sqrt 5 )}^{n + 1}} - {{(1 - \sqrt 5 )}^{n + 1}}} \right]\left[ {1 + \sqrt 5 + 1 - \sqrt 5 } \right] - \left( {1 + \sqrt 5 } \right)\left( {1 - \sqrt 5 } \right)\left[ {{{(1 + \sqrt 5 )}^n} - {{(1 - \sqrt 5 )}^n}} \right]}}{{{2^{n + 2}}\sqrt 5 }}\)
\( = \frac{{\left[ {{{(1 + \sqrt 5 )}^{n + 1}} - {{(1 - \sqrt 5 )}^{n + 1}}} \right] \cdot 2 + 4 \cdot \left[ {{{(1 + \sqrt 5 )}^n} - {{(1 - \sqrt 5 )}^n}} \right]}}{{{2^{n + 2}}\sqrt 5 }}\)
\( = \frac{{{{(1 + \sqrt 5 )}^{n + 1}} - {{(1 - \sqrt 5 )}^{n + 1}}}}{{{2^{n + 1}}\sqrt 5 }} + \frac{{{{(1 + \sqrt 5 )}^n} - {{(1 - \sqrt 5 )}^n}}}{{{2^n}\sqrt 5 }} = {u_{n + 1}} + {u_n}\).
Vậy \(\left( {{u_n}} \right)\) là dãy số Fibonacci.
b)
\(n\) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
\({u_n}\) | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 |
\(\frac{{{u_{n + 1}}}}{{{u_n}}}\) | 1 | 2 | 1,5 | \(\frac{5}{3}\) | \(\frac{8}{5}\) | \(\frac{{13}}{8}\) | \(\frac{{21}}{{13}}\) | \(\frac{{34}}{{21}}\) | \(\frac{{55}}{{34}}\) | \(\frac{{89}}{{55}}\) | \(\frac{{144}}{{89}}\) |
Ta có:
(do \(\left| {\frac{{1 - \sqrt 5 }}{{1 + \sqrt 5 }}} \right| < 1\) nên \(\mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{{1 - \sqrt 5 }}{{1 + \sqrt 5 }}} \right)^n} = 0\) ).